Get Applications de la theorie de Galois differentielle aux PDF

By Gaillard P.

Show description

Read Online or Download Applications de la theorie de Galois differentielle aux equations d'ordre 4 PDF

Similar mathematics books

Download e-book for iPad: Taschenbuch der Mathematik und Physik, 5. Auflage by Ekbert Hering, Rolf Martin, Martin Stohrer

Das Nachschlagewerk f? r Studium und Beruf stellt wichtige Zusammenh? nge und Formeln der Mathematik, Physik, Chemie sowie die Grundlagen der Technik dar. Ebenfalls ber? cksichtigt werden die Gebiete der Optoelektronik, Nachrichtentechnik und Informatik. H? ufig gebrauchte Stoffwerte, Konstanten und Umrechnungen von Einheiten sowie die Eigenschaften der chemischen Elemente sind f?

Download e-book for kindle: Micromechanics of Fracture in Generalized Spaces by Ihar A. Miklashevich

By way of the special research of the fashionable improvement of the mechanics of deformable media are available the deep inner contradiction. From the single hand it's declared that the deformation and fracture are the hierarchical methods that are associated and unite numerous structural and scale degrees. From the opposite hand the sequential research of the hierarchy of the deformation and destruction isn't really conducted.

Additional resources for Applications de la theorie de Galois differentielle aux equations d'ordre 4

Sample text

On note edσ le produit standard3 dans S4 . On remarque que les groupes < a, b, edσ > sont conjugu´es `a D (avec ´egalit´e si σ = 2). 452-453]) donne une m´ethode pour d´eterminer cette image. 442]). On se donne M un sous-V -module fini de p>2 premier Bp : c’est un produit fini de F (jp , kp , lp ; p) =< yjp ,p , ukp ,p , vlp ,p > avec j, k, l ≥ −1. On remarque que F (jp , kp , lp ; p) = M ∩ Bp = Mp . On dira alors que – M est de type 1 si, pour tout p, jp = kp = lp . – M est de type 2 si, pour tout p, kp = lp et si pour au moins un p, jp = kp (sinon, M est de type 1).

Pour tout p, jp , kp , lp ne sont pas deux `a deux distincts et on a deux nombres premiers q < r tels que pour p < q, jp = kp = lp , Mq = F (jq , kq , kq ; q) avec jq = kq , kp = lp pour q < p < r et Mr = F (jr , jr , lr ; r) avec jr = lr . On dira que M est de type 2σ (resp. 3σ ) s’il est l’image par la conjugaison par dσ d’un sous-module de type 2 (resp. 3) avec 0 ≤ σ ≤ 2. 453-454]) : – si π(NormM (4) (G2 )) = V , N est un sous-V -module fid`ele fini de p>2 premier Bp . – si π(NormM (4) (G2 )) =< a, b, edσ > (0 ≤ σ ≤ 2), N est un sous-V -module fid`ele fini de type 1, 2σ , 2(σ+1) ou 3σ .

On dira que M est de type 2σ (resp. 3σ ) s’il est l’image par la conjugaison par dσ d’un sous-module de type 2 (resp. 3) avec 0 ≤ σ ≤ 2. 453-454]) : – si π(NormM (4) (G2 )) = V , N est un sous-V -module fid`ele fini de p>2 premier Bp . – si π(NormM (4) (G2 )) =< a, b, edσ > (0 ≤ σ ≤ 2), N est un sous-V -module fid`ele fini de type 1, 2σ , 2(σ+1) ou 3σ . – si π(NormM (4) (G2 )) = S4 , N est un sous-V -module fid`ele fini de type 1,2 ou 3. Les groupes de la famille F3 sont d´efinis de mani`ere similaire comme des produits semi-directs G2 N de deux groupes G2 et N , la forme de ce dernier d´ependant de G2 .

Download PDF sample

Applications de la theorie de Galois differentielle aux equations d'ordre 4 by Gaillard P.


by Jason
4.1

Rated 4.38 of 5 – based on 45 votes