Applicable geometry: global and local convexity by Heinrich W Guggenheimer PDF

By Heinrich W Guggenheimer

ISBN-10: 0882753681

ISBN-13: 9780882753683

Show description

Read or Download Applicable geometry: global and local convexity PDF

Similar geometry and topology books

Read e-book online Real Methods in Complex and CR Geometry: Lectures given at PDF

The geometry of genuine submanifolds in complicated manifolds and the research in their mappings belong to the main complex streams of latest arithmetic. during this quarter converge the innovations of assorted and complex mathematical fields similar to P. D. E. 's, boundary worth difficulties, brought about equations, analytic discs in symplectic areas, advanced dynamics.

Prof. Ferdinand Verhulst, Prof. Dr. Sebastian Walcher's Das Zebra-Buch zur Geometrie PDF

In den Niederlanden erscheint seit etwa zehn Jahren die erfolgreiche "Zebra-Reihe" mit Broschüren zu Mathematik fuer Projekte und selbstgesteuertes Lernen. Die Themen sind ohne vertiefte Vorkenntnisse zugänglich und ermöglichen eigenes Erforschen und Entdecken von Mathematik. Die Autoren der Bände sind Schulpraktiker, Mathematikdidaktiker und auch Fachwissenschaftler.

Additional info for Applicable geometry: global and local convexity

Sample text

1) : Rn (λ(−a + ix); a + b − 1, c + d − 1, a + d − 1, a − d) Wn (x2 ; a, b, c, d) ˜ n (x2 ; a, b, c, d) = . =W (a + b)n (a + c)n (a + d)n References. [43], [62], [64], [67], [69], [145], [274], [297], [301], [323], [331], [341], [343], [399]. 3 Continuous dual Hahn Definition. Sn (x2 ; a, b, c) = 3 F2 (a + b)n (a + c)n −n, a + ix, a − ix 1 . 1) Orthogonality. If a,b and c are positive except possibly for a pair of complex conjugates with positive real parts, then ∞ 1 2π Γ(a + ix)Γ(b + ix)Γ(c + ix) Γ(2ix) 2 Sm (x2 ; a, b, c)Sn (x2 ; a, b, c)dx 0 = Γ(n + a + b)Γ(n + a + c)Γ(n + b + c)n!

1)n (−N )n Difference equation. 5) where y(x) = Qn (x; α, β, N ) and   B(x) = (x + α + 1)(x − N )  D(x) = x(x − β − N − 1). Forward shift operator. 6) or equivalently ∆Qn (x; α, β, N ) = − n(n + α + β + 1) Qn−1 (x; α + 1, β + 1, N − 1). 7) Backward shift operator. 9) β where ω(x; α, β, N ) = α+x x β+N −x . N −x Rodrigues-type formula. ω(x; α, β, N )Qn (x; α, β, N ) = (−1)n (β + 1)n n ∇ [ω(x; α + n, β + n, N − n)] . 10) Generating functions. For x = 0, 1, 2, . . , N we have 1 F1 −x −t α+1 1 F1 x−N t β+1 N = (−N )n Qn (x; α, β, N )tn .

Continuous Hahn → Jacobi. 1), division by (−1)n tn and the limit t → ∞ : pn − 21 xt; 12 (α + 1 + it), 21 (β + 1 − it), 12 (α + 1 − it), 12 (β + 1 + it) = Pn(α,β) (x). t→∞ (−1)n tn lim Hahn → Jacobi. 1) and let 56 N → ∞. We have (α,β) lim Qn (N x; α, β, N ) = Pn (1 − 2x) (α,β) Pn (1) N →∞ . Jacobi → Laguerre. 1) by letting x → 1 − 2β −1 x and then β → ∞ : lim Pn(α,β) 1 − β→∞ 2x β = L(α) n (x). 1) Jacobi → Hermite. 1 = Hn (x) . 2n n! 2) Gegenbauer / Ultraspherical Gegenbauer / Ultraspherical → Hermite.

Download PDF sample

Applicable geometry: global and local convexity by Heinrich W Guggenheimer


by Richard
4.3

Rated 4.23 of 5 – based on 26 votes