# Download e-book for kindle: 2-Dimension from the Topological Viewpoint by Barmak J.A., Minian E.G. By Barmak J.A., Minian E.G.

Best geometry and topology books

Read e-book online Real Methods in Complex and CR Geometry: Lectures given at PDF

The geometry of actual submanifolds in complicated manifolds and the research in their mappings belong to the main complicated streams of up to date arithmetic. during this quarter converge the recommendations of assorted and complicated mathematical fields comparable to P. D. E. 's, boundary price difficulties, brought on equations, analytic discs in symplectic areas, advanced dynamics.

In den Niederlanden erscheint seit etwa zehn Jahren die erfolgreiche "Zebra-Reihe" mit Broschüren zu Mathematik fuer Projekte und selbstgesteuertes Lernen. Die Themen sind ohne vertiefte Vorkenntnisse zugänglich und ermöglichen eigenes Erforschen und Entdecken von Mathematik. Die Autoren der Bände sind Schulpraktiker, Mathematikdidaktiker und auch Fachwissenschaftler.

Additional info for 2-Dimension from the Topological Viewpoint

Example text

8. Uniqueness of the degree. 29) Theorem. There exists a unique function subordinating to each dcompact map f: U → E, U an open subset of the Euclidean space E, an integer deg(f, U ) which satisﬁes the properties: Localization, Units, Additivity, Homotopy Invariance, Multiplicativity. Proof. We ﬁrst show that the above properties determine the degree deg (f) for special cases. Case 1. Let f: R → R be given by f(x) = ax + b for a, b ∈ R, a = 0. We show that deg (f) = sgn (a). 1. DEGREE OF A MAP 27 Assume that moreover a > 0.

16) Theorem. Let X be a ﬁnite complex and K a ﬁeld and L(f; K ) the Lefschetz number with respect to K . Then the Lefschetz numbers derived in homology and cohomology are equal. Moreover, the Lefschetz number L(f; Q) with respect to the ﬁeld of rational numbers is an integer and we have L(f; K ) = L(f; Q) if char (K ) = 0, the reminder mod p of L(f; Q) if char (K ) = p. 17) Remark. We underlined the ﬁeld of rational numbers for two reasons: it is the smallest ﬁeld of characteristic zero and traditionally the Lefschetz number is deﬁned by use of it.

0 ... 1 ... . . 0 0 ⎤ 0 0 0 .. 0 0 λ1 .. 0 . 0 λr 0 0 .. 1 λr 0 .. 0 1 λr .. 0 0 1 .. ... ... . 0 0 0 .. 0 0 ... 4) r 1 ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ di = d. By d tr A = tr B = d1 λ1 + · · · + dr λr = λj . j=1 On the other hand the characteristic polynomials χA (λ) = χB (λ) are equal. This gives χA (λ) = (λ − λ1 )d1 . . (λ − λr )dr by the property of the determinant. This shows that λj are all the eigenvalues of A and dj their multiplicities, and consequently proves the statement.